void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
image **alphabet = load_alphabet();
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
double time;
char buff[256];
char *input = buff;
float nms=.45;
while(1){
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
image sized = letterbox_image(im, net->w, net->h);
//resize_network(net, sized.w, sized.h);
layer l = net->layers[net->n-1];
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X); // 모델을 통하여 실제 예측
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
int nboxes = 0;
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms); // 겹치는 부분 제거 부분
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes); // 이미지 검출 부분 박스 그리는 함수
free_detections(dets, nboxes);
if(outfile){
save_image(im, outfile);
}
else{
save_image(im, "predictions");
#ifdef OPENCV
make_window("predictions", 512, 512, 0);
show_image(im, "predictions", 0);
#endif
}
free_image(im);
free_image(sized);
if (filename) break;
}
}